
3 Evidence-Based Decisions
Evidence-based decisions use of relevant information to provide a transparent, reasonable, and defensible basis for project
decisions. Key points to evidence-based decisions include:

Quality decisions require quality evidence.
Quality evidence is achieved when information is fit for decision making.
Evidence fit for decision making is relevant, reliable, based on appropriate data and judgment, and properly
reflects uncertainties.
Evidence may be qualitative or quantitative.
Using multiple lines of interdependent evidence to test assumptions and strengthen the CSM increases
confidence in decisions.
The CSM and the DQO process are the primary tools for organizing, identifying, and acquiring the appropriate
information for evidence-based decisions.
Defining uncertainty is an integral component of the DQO process.

The goal of quality management is to identify, plan, and acquire the evidence necessary to answer specific questions, and
then establish clear quality requirements. Properly assessing those requirements leads to confident and defensible
decisions.

3.1 Types of Evidence

Confirmation Bias

Confirmation bias is the tendency to selectively search for or
interpret information in a way that confirms one’s
predeterminations. It is inappropriate to first make the
decision and then align the evidence to justify the decision.

Evidence is relevant information collected or acquired to
answer specific questions. Quality evidence, particularly
multiple lines of interdependent evidence, increases
confidence in the decision. The following hierarchy can
help prioritize the quality of evidence for confident
evidence-based decision making.

Empirical evidence is observable, testable,
repeatable, and falsifiable information
collected through direct observation or
experimentation.

Qualitative Data: Qualitative
data can be found using the
human senses (observation).
Expert observers provide the
highest quality observational
data.
Quantitative Data: Quantitative
data are measurements (such as
concentration of munitions or
munitions debris, amplitude,
mass, or length). The quality of a
measurement is defined in terms
of measurement uncertainty.

Historical evidence is evidence of past
events that can be verified to a reasonable
standard of certainty. Historical evidence
includes documents, records, reports,
artifacts, or other representations of past



events. Since historical events cannot be
observed or repeated in the present, the
quality of historical evidence is based on the
quality of the source of the information.

Primary sources are original
materials that have not been
altered or distorted in any way. A
primary source (also called
original source or evidence) is an
artifact, a document, a
recording, or other source of
information created at the time
(an “eyewitness”) of the event
(such as aerial photos, firing
order, range map, or an
explosive ordnance disposal
[EOD] incident report). Primary
sources, if relevant, are facts
that represent the highest
quality historical information and
afford the highest confidence in
decision making based on
qualitative data.
Secondary sources describe,
discuss, interpret, comment
upon, analyze, evaluate,
summarize, and process primary
sources (for example, Archive
Search Reports). Secondary
sources often lack the firsthand
nature of original material. A
secondary source is generally
one or more steps removed from
the event or time period and is
written or produced after the
fact with the benefit of hindsight.
Secondary sources are also
documented during the MR-QAPP
development on Worksheet #13
(Secondary data uses and
limitations).

Statistical evidence – Statistical evidence
forms the basis for making an inference.
Inference is the process of making an
estimate of a population characteristic based
on a sample from that population.
Anecdotal evidence – Anecdotes, due to
biased or small sample size, are frequently
not representative of typical experience.
Anecdotal evidence can indicate something
is possible, but does not establish likelihood
of success. This evidence is often used when
other evidence is lacking. Often, testimonials
used in advertising are anecdotal.
Analogical evidence – This is a weak form of
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evidence that suggests something true
about one thing is also true of another due
to similarity

3.2 Conceptual Site Model
The CSM represents relevant known and hypothetical site characteristics, conditions, and features developed from evidence
collected or acquired throughout the project life cycle. A CSM can be presented in multiple ways including text description,
tables, figures, flow diagrams, maps, and pictures. For example, if evidence indicates the MRS was a former artillery range,
the CSM would include a high anomaly density area where UXO/DMM may be present in the former target. Known physical
features of the MRS, such as geology, and data about the suspected munitions, such as their function and how they were
deployed, are used to develop a preliminary depth profile. Additionally, known information about site access and land use
are included to form a basis of understanding receptors and potential exposure pathways. A pictorial example of a CSM is
presented in Figure 3-1.

Figure 3‑1. Example of a pictorial CSM.

Attributes of a high-quality MR CSM are type of munitions, extent (horizontal and vertical distribution) and concentration of
UXO/DMM and MD, as well as past, current, and anticipated future land use, exposure pathways, and receptors. Depending
on the phase of the MR, the CSM may be based on historical information or on investigation derived data. The CSM should be
updated throughout the process of MR as additional information becomes available and initial assumptions are confirmed or
refuted.

The PDT uses the CSM within the Systematic Planning Process to accomplish the following:

Identify what is known and unknown about the site.1.
Identify and organize decisions.2.



Identify the sources and quality of information needed to make the decisions.3.
Evaluate the quality of those decisions.4.
Identify data needs or data gaps.5.

The CSM is documented on MR-QAPP Worksheet #10. Therefore, a well-developed CSM provides a summary of everything
known about the site characterization, including site history and findings of previous studies, and identifies data gaps of the
site characterization. Data gaps do not, however, necessarily equate to data needs required to characterize the MRS.

The CSM should evolve throughout a project and throughout the project life cycle as new data are collected and as site
conditions or receptors change. If changes in site conditions or new data are warranted during phases of an MR project, the
PDT should reevaluate the CSM for the MRS to determine whether the project approach should be modified and to plan for
any future phases  necessary. Further information on these methods and their QC requirements can be found in
“Environmental Quality-Conceptual Site Models” Engineer Manual EM-200-1-12 (USACE 2012).

The CSM should be consistent with the current and reasonably anticipated future land use. For Federal Land Management
Agencies (FLMAs), the land use and management designations are detailed in federal land management plans. FLMAs
provide these plans to the PDT along with any detailed land use information that may affect the DQOs, RAOs, and
alternatives to be evaluated. Land Use Control Implementation Plans, which inherently involve acceptance by the landowner,
should be negotiated and agreed upon to ensure that remedies involving land use controls will remain protective.

3.3 Systematic Planning: USEPA Data Quality Objective Process
The USEPA Data Quality Objective (DQO) process is the preferred systematic approach for collecting or assessing
information or data for evidence-based decision making. The DQO process is used to establish performance and acceptance
criteria, which serve as the basis for designing a plan for collecting data of sufficient quality and quantity to support the
goals of the study.

The USEPA DQO process is relevant to all aspects of the work performed where data are required to make a decision. The
DQO process is most amenable to an environmental measurement but can be used for any decision based on evidence. The
process involves seven steps and yields (step 6) the qualitative or quantitative statements (the DQO). A detailed explanation
of the DQO process can be found in Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA
QA/GA-4.

3.3.1 Data Quality Objectives
DQOs are qualitative and quantitative statements derived from the outputs of the first six steps of the DQO process. These
statements clarify the study objectives, define the most appropriate type of data to collect, determine the appropriate
conditions from which to collect the data, and specify tolerable limits on decision errors which are used as the basis for
establishing the quantity and quality of data needed to support the decision (MR-QAPP Worksheet #11)

Although the USEPA DQO process is a seven-step process, DQOs are determined by the responses to the following three
questions (Ramsey and Hewitt 2005):

What is the specific question to be answered by data?1.
This step involves identifying the key questions that the study attempts to address, along with alternative
actions or outcomes that may result based on the answers to these key questions. Many of these key questions
are derived from the CSM. The question should be stated as specifically as possible. Planners should also identify
key unknown conditions or unresolved issues that may lead to a solution to the problem.
What is the decision unit (DU)?2.
The DU represents the scale of observation necessary to make the decision. The DU is the specific area, grid, or
demarcated extent from which the sample is collected and to which analytical results apply for decision making.
There may be one or multiple DUs within an MRS. For example, if the activity is to locate former target areas, the
entire MRS may be the DU. Or if the activity is to characterize an area of high anomaly density within the MRS,
the high anomaly density area becomes the DU or if the objective is to classify an anomaly as TOI, then the
anomaly becomes the DU.
What is the desired decision confidence (level of uncertainty)?3.
When technically feasible, an expression of statistical uncertainty for the decision is desirable because it is
considered more objective. But mathematical treatment of uncertainty may not always be technically feasible or

https://www.epa.gov/fedfac/uniform-federal-policy-quality-assurance-project-plans-munitions-response-qapp-toolkit
https://www.epa.gov/sites/production/files/2015-06/documents/g4-final.pdf
https://www.epa.gov/sites/production/files/2015-06/documents/g4-final.pdf
https://www.epa.gov/sites/production/files/2015-06/documents/g4-final.pdf
https://www.epa.gov/fedfac/uniform-federal-policy-quality-assurance-project-plans-munitions-response-qapp-toolkit


necessary (see Uncertainty). Qualitative expressions of decision confidence through a weight-of-evidence
approach may well be sufficient, and in some cases, may be the only option available (USEPA 2001a).
Confidence is also related to the underlying quality criteria identified for the project.

3.3.2  Data  Quality  (Measurement  Performance  Criteria,  Data  Quality  Indicators,
Measurement  Quality  Objectives,  and  Quality  Control)
To effectively implement DQOs during the project life cycle, planners must define and document qualitative and quantitative
requirements and acceptance thresholds and limits for these requirements. These elements are defined during the
systematic planning process  and documented in the UFP-QAPP  as part of that process. This section presents definitions of
the elements that comprise DQOs. Figure 3‑2 presents the progression of DQO development and the corresponding QAPP
Worksheets.

Measurement Performance Criteria – MPC are quantitative measurement performance criteria used to guide the
selection of appropriate types of data and measurement. MPCs are developed to ensure collected data satisfy DQOs. MPCs
are stated in terms of data quality indicators (DQI) and measurement quality objectives (MQOs). MPCs signify key quality
indicators needed for successful decision making at the completion of the project and are documented in MR-QAPP
Worksheet #12.

Data Quality Indicators – DQIs are qualitative and quantitative measures of data quality  attributes. DQIs include
precision, accuracy, representativeness, comparability, completeness, and sensitivity (PARCCS). For purposes of
consistency, the following terms are used throughout this document.

Precision – the measure of agreement among repeated measurements of the same property under identical, or
substantially similar, conditions.
Bias – systematic or persistent distortion of a measurement process that causes errors in one direction.
Accuracy – a measure of the overall agreement of a measurement to a known value.
Representativeness – the measure of the degree to which data accurately and precisely represent a
characteristic of a population, parameter variations at a sampling point, a process condition, or an
environmental condition.
Comparability – a qualitative term that expresses the measure of confidence that two or more data sets can
contribute to a common analysis.
Completeness – a measure of the amount of valid data obtained from a measurement system.
Sensitivity – the capability of a method or instrument to discriminate between measurement responses
representing different levels of the variable of interest.
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Figure 3‑2. Elements of DQOs and the progression of their development.

Measurement Quality Objectives (MQO) – MQOs are the performance requirements for specific DQIs. MQOs specify how
good the data must be for confident decision making. MQOs are the acceptance thresholds or limits for the collection or
analysis of data, based on the MPC, which are derived from the DQOs. MQOs provide QC specifications for measurement
processes, including analytical methods, designed to control and document measurement uncertainty in data. MQOs
establish QC requirements for all field data collection activities. References to the applicable process (DFW) or SOPs are
therefore an integral part of MQOs. Failure of an MQO can be corrected, but the failure response must include a RCA to
determine the appropriate corrective action and these concepts are summarized in Appendix A. MQO’s are specified on MR-
QAPP Worksheet #22.

Verification and Validation – Data verification is a completeness check to confirm that all required activities were
conducted, all specified records are present, and the contents of the records are complete. The data validation process
evaluates whether data conforms to stated requirements. MR-QAPP Worksheets #34 and #35 define the required
documentation and establish the procedures to support these processes.

Data Usability Assessment – The data usability assessment (DUA) is performed by key members of the PDT upon
completion of data collection activities for activities within an investigation (the detection survey, the cued survey, and the
intrusive investigation) before proceeding to the next phase. The DUA includes a qualitative and quantitative evaluation to
determine whether project data are of the right type, quality, and quantity to support the MPCs and DQOs specific to that
activity of the investigation. This evaluation also includes a retrospective review of the systematic planning process to
evaluate whether underlying assumptions are supported, sources of uncertainty in data have been managed appropriately,
data are representative of the population of interest, and the results can be used as intended with an acceptable level of
confidence. MR-QAPP Worksheet #37 defines and documents the DUA process.

3.4 Uncertainty
Defining uncertainty is an integral component of the DQO process. The purpose of acquiring and assessing the quality of
evidence is to make decisions. The reliability of a decision depends on the quality of the evidence, and the quality of the
evidence depends in part on the uncertainties inherent in the evidence. Assessing evidence and deciding, without
considering uncertainties, is futile. Likewise, presenting the results of an assessment without giving information about the
uncertainties involved makes the results essentially meaningless (Ramsey 2007).
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Incorrect estimates of uncertainty or ignoring uncertainties altogether may result in wrong decisions (false positives or false
negatives). Wrong decisions are mistakes that may have severe consequences. Information about uncertainty allows
decision makers to judge the quality of the evidence and its fitness as a basis for decision making.

Effective procedures are crucial for estimating and reporting uncertainties arising from processes used to acquire evidence.
Uncertainties that arise during the assessment should be described and quantified if possible. Best practices for this process
vary, depending on the issue and the assessment methods used. In some cases, rigorous statistical methods can be used,
especially where the main uncertainties relate to random sampling or measurement error. In other cases, qualitative
methods are more appropriate.

3.4.1 Qualitative Uncertainty
Estimates of uncertainty in qualitative evidence are based on the source of the evidence. In the hierarchy of sources,
empirical qualitative data has less uncertainty than historical information, and primary historical sources have less
uncertainty than secondary information. The purpose of the hierarchy is to provide a basis for assessing uncertainty and
consequently the quality of decisions supported by qualitative information.

For example, decisions such as establishing the boundaries of an MRS are often based on historical information alone.
However, the consequences of incorrectly locating the MRS are severe. If this decision is wrong, the focus and the results of
subsequent investigations may be hopelessly biased and lead to a wrong decision. Because the consequences of being
wrong are severe, this decision should be based on the highest quality (lowest uncertainty) historical information available
(such as aerial photos and range records). Moreover, any decision based solely on historical information should be
considered preliminary until confirmed with empirical data. Because of the uncertainty associated with historical information,
empirical data is required to validate the information for confident decisions.

Additional details on the historical records review process and data sources are provided in the ITRC document Munitions
Response Historical Records Review (UXO-2) (ITRC 2003).

3.4.2 Quantitative Uncertainty (Measurement Error)
Quantitative uncertainty is the error in a measurement due to random and systematic effects on the measurement process
and is quantified as precision and bias, respectively. The combined estimate of precision and bias errors in the measurement
is the total error/uncertainty in the measurement. Total measurement error is the most important single parameter that
describes the quality of measurements, because uncertainty fundamentally affects the decisions that are based upon the
measured result. Too much uncertainty or error in the result increases the chance of a wrong decision.

3.4.2.1 Random Error
Random error is a component of uncertainty which, during many measurements of the same characteristic, remains
constant or varies in an unpredictable way (ISO 3534-1: 3.9). Random errors are present in all measurements. Unlike
systematic errors, random errors are unpredictable, which makes them difficult to detect. Random errors, however, often
have a Gaussian (normal) distribution and in such cases, statistical methods may be used to analyze the data and estimate
error. There are several measures of random error, including but not limited to:

confidence intervals
standard error
coefficient of variance
P values

Random error can be subdivided into sampling errors and analytical errors. The estimate of random sampling and analytical
error is made by replicate sampling and analysis. Traditionally, these errors have been quantified as sampling and analytical
precision.

Random error occurs for a variety of reasons, including:

too few samples or transects
environmental conditions such as temperature and humidity, which can be controlled in AGC work by, for
example, taking background reading every two hours
equipment sensitivity, such as when an instrument is not be sensitive enough to respond to or indicate a change
in some quantity or effect, or the observer may not be able to discern the change
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equipment noise (electrical noise or static)
imprecise requirements

Precise measurement requirements are required to avoid ambiguities in interpretation. It is necessary to state the
measurement quantity (length, mass, concentration, amplitude), but also important to specify the decision unit to which the
measurement applies (see DU).

Methods to reduce random error (imprecision) include:

Collect more samples.
Make multiple measurements.
Use the best measuring equipment available.
Establish precision requirements for measurements.

3.4.2.2 Systematic Error (Measurement Bias)
Systematic error is a component of uncertainty which, during many measurements for the same characteristic, remains
constant or varies in a predictable way (ISO 11074-2).

Systematic error deviates by a fixed amount from the true value of measurement. Systematic errors are difficult to detect
but, as opposed to random errors, easier to correct. Like random error, systematic error can be subdivided into both
analytical/measurement and sampling error. These sources of errors are usually quantified as measurement bias (difference
between measured value and true value) and sampling bias, although the quantification of sampling bias is difficult if not
impossible.

The wrong instrument, a poorly calibrated instrument, and operator error can all produce analytical bias.
Analytical/measurement bias can be estimated by measuring the difference between the measurement and true value on
well-matched certified reference materials (such as ISO standards), or by taking it directly from the validation of the
analytical/measurement method.

Eliminating bias in sampling is critical. Sampling bias results from selecting nonrandom or nonrepresentative samples.
Estimating and detecting sampling bias is difficult if not impossible. Sampling bias is controlled by adhering to quality
systems, using standard practices and procedures, using appropriate and properly calibrated equipment, and employing
skilled operators.

Total quantitative uncertainty is the total estimated error from random (precision) and systematic (bias) effects throughout
the entire measurement process. Therefore estimating, calculating, and accounting for uncertainty in a measurement can
only be accomplished when the entire measurement process and sources of error within the process are completely
understood. Once the entire process is understood and uncertainty requirements have been established, QC can be
designed and implemented to evaluate and estimate uncertainty throughout the entire process.

The overall objective in estimating uncertainty is to obtain a reliable estimate of the overall uncertainty of measurement.
This objective does not require that all the individual sources of uncertainty to be quantified, only that the combined effect
be assessed. If, however, the overall level of uncertainty is found to be unacceptable (the measurements are not fit for
purpose) then the uncertainty must be reduced (Ramsey 2007).

3.4.3 Uncertainty in Scientific Models
Models are used to project or predict outcomes based on assumed inputs. A scientific model is accepted as valid only after it
is tested against data from the real world and the evidence supports its results. Visual Sampling Plan (VSP) is a model used
to develop MRS sampling plans using certain assumptions such as the size and shape of target areas, background density,
number of potential TOIs per acre and others. AGC models features extracted from subsurface anomalies to predict TOI.
Both models have been tested extensively and considered valid.

Model results, however, include uncertainty. To reduce uncertainty of decisions based on models, site-specific data is
gathered to see whether the real-world data agree with the predictions. For VSP, after site-specific data is acquired, it is
used as VSP inputs to confirm the sampling plan (transect design) develop based on assumptions was sufficient for the
project. For AGC predictions, all TOIs are excavated and evaluated to ensure accurate predictions and several non-TOI are
dug and assessed to evaluate the accuracy of those predictions. If predictions do not agree with the actual data, sampling
plans may be revised, or corrective actions implemented to determine cause of the failure.



Evidence-based decisions require a systematic and rational approach to researching, collecting, and assessing the best
available evidence to make logical empirically supported decisions. (USEPA 2001d; USACE 2009, Section 3.3; DON in
progress). The best, most reliable evidence is information or data that is fit for decision making. The fitness of evidence can
only be judged by having reliable estimates of uncertainty.

3.4.4 Uncertainty and Data Gaps
The overall objective in estimating uncertainty is to obtain a reliable estimate of the overall uncertainty of measurement.
This objective does not require that all the individual sources of uncertainty to be quantified, only that the combined effect
be assessed. If, however, the overall level of uncertainty is found to be unacceptable (the measurements are not fit for
purpose) then the uncertainty must be reduced (Ramsey 2007).

Strategies for managing uncertainties include assessing the quality of available information (see evidence hierarchy and
uncertainty, evaluating error (conformance to QC requirements), identifying data gaps, assessing the impact the overall
uncertainty has on the pertinent decisions (what if the wrong choice is made?) and if necessary, deciding how to resolve the
uncertainty (minimize error) or fill data gaps.

Missing or insufficient information increases uncertainty. Reconsidering and interpreting historical information or preexisting
evidence is one way to fill information gaps. Collecting new data, however, may be the only option to fill data gaps. For
example, a data gap could be unavailable or incomplete historical aerial photography during periods of suspected munitions
use onsite. Analysis of aerial photography during that time frame could support the presence or absence of ground surface
features related to munitions use in a specific location such as an artillery or aerial bombing target.

The PDT should also use the CSM to identify data gaps. As the first step of the DQO process, the CSM can identify data gaps
and focus the problem statement for the investigation. Regardless, once the PDT decides to assess or reexamine existing
data or collect new data, the team implements the DQO process to determine type and quality of data required to fill the
data gaps.
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